Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Brain ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701342

RESUMO

Network neuroscience offers a unique framework to understand the organizational principles of the human brain. Despite recent progress, our understanding of how the brain is modulated by focal lesions remains incomplete. Resection of the temporal lobe is the most effective treatment to control seizures in pharmaco-resistant temporal lobe epilepsy (TLE), making this syndrome a powerful model to study lesional effects on network organization in young and middle-aged adults. Here, we assessed the downstream consequences of a focal lesion and its surgical resection on the brain's structural connectome, and explored how this reorganization relates to clinical variables at the individual patient level. We included adults with pharmaco-resistant TLE (n = 37) who underwent anterior temporal lobectomy between two imaging time points, as well as age- and sex-matched healthy controls who underwent comparable imaging (n = 31). Core to our analysis was the projection of high-dimensional structural connectome data-derived from diffusion MRI tractography from each subject-into lower-dimensional gradients. We then compared connectome gradients in patients relative to controls before surgery, tracked surgically-induced connectome reconfiguration from pre- to postoperative time points, and examined associations to patient-specific clinical and imaging phenotypes. Before surgery, individuals with TLE presented with marked connectome changes in bilateral temporo-parietal regions, reflecting an increased segregation of the ipsilateral anterior temporal lobe from the rest of the brain. Surgery-induced connectome reorganization was localized to this temporo-parietal subnetwork, but primarily involved postoperative integration of contralateral regions with the rest of the brain. Using a partial least-squares analysis, we uncovered a latent clinical-imaging signature underlying this pre- to postoperative connectome reorganization, showing that patients who displayed postoperative integration in bilateral fronto-occipital cortices also had greater preoperative ipsilateral hippocampal atrophy, lower seizure frequency, and secondarily generalized seizures. Our results bridge the effects of focal brain lesions and their surgical resections with large-scale network reorganization and inter-individual clinical variability, thus offering new avenues to examine the fundamental malleability of the human brain.

2.
Neuroinformatics ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568476

RESUMO

Multimodal neuroimaging grants a powerful in vivo window into the structure and function of the human brain. Recent methodological and conceptual advances have enabled investigations of the interplay between large-scale spatial trends - or gradients - in brain structure and function, offering a framework to unify principles of brain organization across multiple scales. Strong community enthusiasm for these techniques has been instrumental in their widespread adoption and implementation to answer key questions in neuroscience. Following a brief review of current literature on this framework, this perspective paper will highlight how pragmatic steps aiming to make gradient methods more accessible to the community propelled these techniques to the forefront of neuroscientific inquiry. More specifically, we will emphasize how interest for gradient methods was catalyzed by data sharing, open-source software development, as well as the organization of dedicated workshops led by a diverse team of early career researchers. To this end, we argue that the growing excitement for brain gradients is the result of coordinated and consistent efforts to build an inclusive community and can serve as a case in point for future innovations and conceptual advances in neuroinformatics. We close this perspective paper by discussing challenges for the continuous refinement of neuroscientific theory, methodological innovation, and real-world translation to maintain our collective progress towards integrated models of brain organization.

3.
Prog Neurobiol ; 236: 102604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604584

RESUMO

Temporal lobe epilepsy (TLE) is the most common pharmaco-resistant epilepsy in adults. While primarily associated with mesiotemporal pathology, recent evidence suggests that brain alterations in TLE extend beyond the paralimbic epicenter and impact macroscale function and cognitive functions, particularly memory. Using connectome-wide manifold learning and generative models of effective connectivity, we examined functional topography and directional signal flow patterns between large-scale neural circuits in TLE at rest. Studying a multisite cohort of 95 patients with TLE and 95 healthy controls, we observed atypical functional topographies in the former group, characterized by reduced differentiation between sensory and transmodal association cortices, with most marked effects in bilateral temporo-limbic and ventromedial prefrontal cortices. These findings were consistent across all study sites, present in left and right lateralized patients, and validated in a subgroup of patients with histopathological validation of mesiotemporal sclerosis and post-surgical seizure freedom. Moreover, they were replicated in an independent cohort of 30 TLE patients and 40 healthy controls. Further analyses demonstrated that reduced differentiation related to decreased functional signal flow into and out of temporolimbic cortical systems and other brain networks. Parallel analyses of structural and diffusion-weighted MRI data revealed that topographic alterations were independent of TLE-related cortical thinning but partially mediated by white matter microstructural changes that radiated away from paralimbic circuits. Finally, we found a strong association between the degree of functional alterations and behavioral markers of memory dysfunction. Our work illustrates the complex landscape of macroscale functional imbalances in TLE, which can serve as intermediate markers bridging microstructural changes and cognitive impairment.


Assuntos
Conectoma , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/patologia , Estudos de Coortes , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia
4.
Neuroimage ; 291: 120595, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554782

RESUMO

Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/GAN-MAT.


Assuntos
Transtorno do Espectro Autista , Conectoma , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imagem Multimodal , Processamento de Imagem Assistida por Computador/métodos
5.
J Neurosci ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527807

RESUMO

Adaptive behavior relies both on specific rules that vary across situations and stable long-term knowledge gained from experience. The frontoparietal control network (FPCN) is implicated in the brain's ability to balance these different influences on action. Here, we investigate how the topographical organization of the cortex supports behavioral flexibility within the FPCN. Functional properties of this network might reflect its juxtaposition between the dorsal attention network (DAN) and the default mode network (DMN), two large-scale systems implicated in top-down attention and memory-guided cognition, respectively. Our study tests whether subnetworks of FPCN are topographically proximal to the DAN and the DMN, respectively, and how these topographical differences relate to functional differences: the proximity of each subnetwork is anticipated to play a pivotal role in generating distinct cognitive modes relevant to working memory and long-term memory. We show that FPCN subsystems share multiple anatomical and functional similarities with their neighboring systems (DAN and DMN) and that this topographic architecture supports distinct interaction patterns that give rise to different patterns of functional behavior. The FPCN acts as a unified system when long-term knowledge supports behavior but becomes segregated into discrete subsystems with different patterns of interaction when long term memory is less relevant. In this way, our study suggests that the topographic organization of the FPCN, as well as the connections it forms with distant regions of cortex, are important influences on how this system supports flexible behavior.Significance Statement Adaptive behavior depends on adjudicating between specific rules that vary across situations. The frontoparietal control network (FPCN) helps guide this process through its interactions with other brain regions. We examined how local topographical features support this function of the FPCN. Subnetworks within the FPCN share key anatomical and functional features with adjacent systems linked to external attention and long-term knowledge. This topographic architecture supports the emergence of distinct interaction patterns: FPCN subnetworks act cohesively when long-term memory can support behavior, but segregate when long-term memory is not aligned with current goals. Our study shows that, in addition to dynamic interaction with spatially distant cortical regions, local topographical features of the FPCN play a significant role in flexible behavior.

6.
Epileptic Disord ; 26(2): 225-232, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353525

RESUMO

The ILAE Neuroimaging Task Force publishes educational case reports that highlight basic aspects of neuroimaging in epilepsy consistent with the ILAE's educational mission. Subcortical laminar heterotopia, also known as subcortical band heterotopia (SBH) or "double cortex," is an intriguing and rare congenital malformation of cortical development. SBH lesions are part of a continuum best designated as agyria-pachygyria-band-spectrum. The malformation is associated with epilepsy that is often refractory, as well as variable degrees of developmental delay. Moreover, in an increasing proportion of cases, a distinct molecular-genetic background can be found. Diagnosing SBH can be a major challenge for many reasons, including more subtle lesions, and "non-classic" or unusual MRI-appearances. By presenting an illustrative case, we address the challenges and needs of diagnosing and treating SBH patients in epilepsy, especially the value of high-resolution imaging and specialized MRI-protocols.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Epilepsia , Humanos , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/diagnóstico por imagem , Córtex Cerebral/patologia , Epilepsia/etiologia , Neuroimagem , Imageamento por Ressonância Magnética
7.
Neuroimage ; 288: 120534, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340881

RESUMO

Autism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Transtorno Autístico/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
8.
Neuroimage ; 285: 120481, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043839

RESUMO

Autism spectrum disorder (ASD) is one of the most common neurodevelopmental diagnoses. Although incompletely understood, structural and functional network alterations are increasingly recognized to be at the core of the condition. We utilized multimodal imaging and connectivity modeling to study structure-function coupling in ASD and probed mono- and polysynaptic mechanisms on structurally-governed network function. We examined multimodal magnetic resonance imaging data in 80 ASD and 61 neurotypical controls from the Autism Brain Imaging Data Exchange (ABIDE) II initiative. We predicted intrinsic functional connectivity from structural connectivity data in each participant using a Riemannian optimization procedure that varies the times that simulated signals can unfold along tractography-derived personalized connectomes. In both ASD and neurotypical controls, we observed improved structure-function prediction at longer diffusion time scales, indicating better modeling of brain function when polysynaptic mechanisms are accounted for. Prediction accuracy differences (∆prediction accuracy) were marked in transmodal association systems, such as the default mode network, in both neurotypical controls and ASD. Differences were, however, lower in ASD in a polysynaptic regime at higher simulated diffusion times. We compared regional differences in ∆prediction accuracy between both groups to assess the impact of polysynaptic communication on structure-function coupling. This analysis revealed that between-group differences in ∆prediction accuracy followed a sensory-to-transmodal cortical hierarchy, with an increased gap between controls and ASD in transmodal compared to sensory/motor systems. Multivariate associative techniques revealed that structure-function differences reflected inter-individual differences in autistic symptoms and verbal as well as non-verbal intelligence. Our network modeling approach sheds light on atypical structure-function coupling in autism, and suggests that polysynaptic network mechanisms are implicated in the condition and that these can help explain its wide range of associated symptoms.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Transtorno Autístico/diagnóstico por imagem , Conectoma/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38082728

RESUMO

Autism spectrum disorder is a common neurodevelopmental condition showing connectome disorganization in sensory and transmodal cortices. However, alterations in the inter-hemispheric asymmetry of structural connectome are remained to be investigated. Here, we studied structural connectome asymmetry in individuals with autism using dimensionality reduction techniques and assessed its topological underpinnings by associating with network communication measures. We found that the sensory and heteromodal association regions showed significant between-group differences in inter-hemispheric asymmetry between individuals with autism and neurotypical controls. In addition, the network communication ability was particularly altered between visual and limbic areas. Our findings provide insights for understanding structural connectome alteration in autism and its topological underpinnings.Clinical Relevance- This study provides insights into the understanding of atypical macroscale structural connectome organization in individuals with autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Comunicação
10.
Netw Neurosci ; 7(4): 1363-1388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144691

RESUMO

A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.

11.
Elife ; 122023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37956092

RESUMO

The hippocampus is an archicortical structure, consisting of subfields with unique circuits. Understanding its microstructure, as proxied by these subfields, can improve our mechanistic understanding of learning and memory and has clinical potential for several neurological disorders. One prominent issue is how to parcellate, register, or retrieve homologous points between two hippocampi with grossly different morphologies. Here, we present a surface-based registration method that solves this issue in a contrast-agnostic, topology-preserving manner. Specifically, the entire hippocampus is first analytically unfolded, and then samples are registered in 2D unfolded space based on thickness, curvature, and gyrification. We demonstrate this method in seven 3D histology samples and show superior alignment with respect to subfields using this method over more conventional registration approaches.


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Lobo Temporal , Técnicas Histológicas
12.
PLoS Biol ; 21(11): e3002365, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943873

RESUMO

The human isocortex consists of tangentially organized layers with unique cytoarchitectural properties. These layers show spatial variations in thickness and cytoarchitecture across the neocortex, which is thought to support function through enabling targeted corticocortical connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histology, we aimed to quantitatively characterize the systematic covariation of laminar structure in the cortex and its functional consequences. After correcting for the effect of cortical curvature, we identified a spatial pattern of changes in laminar thickness covariance from lateral frontal to posterior occipital regions, which differentiated the dominance of infra- versus supragranular layer thickness. Corresponding to the laminar regularities of cortical connections along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was associated with higher hierarchical positions of regions, mapped based on resting-state effective connectivity in humans and tract-tracing of structural connections in macaques. Moreover, we show that regions with similar laminar thickness patterns have a higher likelihood of structural connections and strength of functional connections. In sum, here we characterize the organization of laminar thickness in the human isocortex and its association with cortico-cortical connectivity, illustrating how laminar organization may provide a foundational principle of cortical function.


Assuntos
Neocórtex , Animais , Humanos , Macaca , Córtex Cerebral
13.
Biol Psychiatry Glob Open Sci ; 3(4): 1083-1093, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881579

RESUMO

Background: Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ). Methods: We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.8% female) using whole-genome genotyping and T1-weighted magnetic resonance imaging (n = 390) from the PING (Pediatric Imaging, Neurocognition, and Genetics) cohort. We contextualized the findings using 1) age-matched transcriptomics, 2) histologically defined cytoarchitectural types and functionally defined networks, and 3) case-control differences of schizophrenia and other major psychiatric disorders derived from meta-analytic data of 6 ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) working groups, including a total of 12,876 patients and 15,670 control participants. Results: Higher PRS-SCZ was associated with greater cortical thickness, which was most prominent in areas with heightened gene expression of dendrites and synapses. PRS-SCZ-related increases in vertexwise cortical thickness were mainly distributed in association cortical areas, particularly the ventral attention network, while relatively sparing koniocortical type cortex (i.e., primary sensory areas). The large-scale pattern of cortical thickness increases related to PRS-SCZ mirrored the pattern of cortical thinning in schizophrenia and mood-related psychiatric disorders derived from the ENIGMA consortium. Age group models illustrate a possible trajectory from PRS-SCZ-associated cortical thickness increases in early childhood toward thinning in late adolescence, with the latter resembling the adult brain phenotype of schizophrenia. Conclusions: Collectively, combining imaging genetics with multiscale mapping, our work provides novel insight into how genetic risk for schizophrenia affects the cortex early in life.

14.
Nat Commun ; 14(1): 5656, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37704600

RESUMO

Recent theories of cortical organisation suggest features of function emerge from the spatial arrangement of brain regions. For example, association cortex is located furthest from systems involved in action and perception. Association cortex is also 'interdigitated' with adjacent regions having different patterns of functional connectivity. It is assumed that topographic properties, such as distance between regions, constrains their functions, however, we lack a formal description of how this occurs. Here we use variograms, a quantification of spatial autocorrelation, to profile how function changes with the distance between cortical regions. We find function changes with distance more gradually within sensory-motor cortex than association cortex. Importantly, systems within the same type of cortex (e.g., fronto-parietal and default mode networks) have similar profiles. Primary and association cortex, therefore, are differentiated by how function changes over space, emphasising the value of topographical features of a region when estimating its contribution to cognition and behaviour.


Assuntos
Cognição , Córtex Sensório-Motor , Análise Espacial
15.
Mol Psychiatry ; 28(10): 4331-4341, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37587246

RESUMO

Autism is a neurodevelopmental condition involving atypical sensory-perceptual functions together with language and socio-cognitive deficits. Previous work has reported subtle alterations in the asymmetry of brain structure and reduced laterality of functional activation in individuals with autism relative to non-autistic individuals (NAI). However, whether functional asymmetries show altered intrinsic systematic organization in autism remains unclear. Here, we examined inter- and intra-hemispheric asymmetry of intrinsic functional gradients capturing connectome organization along three axes, stretching between sensory-default, somatomotor-visual, and default-multiple demand networks, to study system-level hemispheric imbalances in autism. We observed decreased leftward functional asymmetry of language network organization in individuals with autism, relative to NAI. Whereas language network asymmetry varied across age groups in NAI, this was not the case in autism, suggesting atypical functional laterality in autism may result from altered developmental trajectories. Finally, we observed that intra- but not inter-hemispheric features were predictive of the severity of autistic traits. Our findings illustrate how regional and patterned functional lateralization is altered in autism at the system level. Such differences may be rooted in atypical developmental trajectories of functional organization asymmetry in autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Conectoma , Humanos , Imageamento por Ressonância Magnética , Encéfalo , Lateralidade Funcional/fisiologia , Mapeamento Encefálico
16.
Commun Biol ; 6(1): 704, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429897

RESUMO

Functional connectivity hierarchy is an important principle in the process of brain functional organization and an important feature reflecting brain development. However, atypical brain network hierarchy organization in Rolandic epilepsy have not been systematically investigated. We examined connectivity alteration with age and its relation to epileptic incidence, cognition, or underlying genetic factors in 162 cases of Rolandic epilepsy and 117 typically developing children, by measuring fMRI multi-axis functional connectivity gradients. Rolandic epilepsy is characterized by contracting and slowing expansion of the functional connectivity gradients, highlighting the atypical age-related change of the connectivity hierarchy in segregation properties. The gradient alterations are relevant to seizure incidence, cognition, and connectivity deficit, and development-associated genetic basis. Collectively, our approach provides converging evidence for atypical connectivity hierarchy as a system-level substrate of Rolandic epilepsy, suggesting this is a disorder of information processing across multiple functional domains, and established a framework for large-scale brain hierarchical research.


Assuntos
Epilepsia Rolândica , Criança , Humanos , Encéfalo/diagnóstico por imagem , Cognição , Convulsões
17.
Elife ; 122023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440423

RESUMO

Chemoarchitecture, the heterogeneous distribution of neurotransmitter transporter and receptor molecules, is a relevant component of structure-function relationships in the human brain. Here, we studied the organization of the receptome, a measure of interareal chemoarchitectural similarity, derived from positron-emission tomography imaging studies of 19 different neurotransmitter transporters and receptors. Nonlinear dimensionality reduction revealed three main spatial gradients of cortical chemoarchitectural similarity - a centro-temporal gradient, an occipito-frontal gradient, and a temporo-occipital gradient. In subcortical nuclei, chemoarchitectural similarity distinguished functional communities and delineated a striato-thalamic axis. Overall, the cortical receptome shared key organizational traits with functional and structural brain anatomy, with node-level correspondence to functional, microstructural, and diffusion MRI-based measures decreasing along a primary-to-transmodal axis. Relative to primary and paralimbic regions, unimodal and heteromodal regions showed higher receptomic diversification, possibly supporting functional flexibility.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Tomografia por Emissão de Pósitrons , Imagem de Difusão por Ressonância Magnética
18.
Elife ; 122023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37417306

RESUMO

The human brain supports social cognitive functions, including Theory of Mind, empathy, and compassion, through its intrinsic hierarchical organization. However, it remains unclear how the learning and refinement of social skills shapes brain function and structure. We studied if different types of social mental training induce changes in cortical function and microstructure, investigating 332 healthy adults (197 women, 20-55 years) with repeated multimodal neuroimaging and behavioral testing. Our neuroimaging approach examined longitudinal changes in cortical functional gradients and myelin-sensitive T1 relaxometry, two complementary measures of cortical hierarchical organization. We observed marked changes in intrinsic cortical function and microstructure, which varied as a function of social training content. In particular, cortical function and microstructure changed as a result of attention-mindfulness and socio-cognitive training in regions functionally associated with attention and interoception, including insular and parietal cortices. Conversely, socio-affective and socio-cognitive training resulted in differential microstructural changes in regions classically implicated in interoceptive and emotional processing, including insular and orbitofrontal areas, but did not result in functional reorganization. Notably, longitudinal changes in cortical function and microstructure predicted behavioral change in attention, compassion and perspective-taking. Our work demonstrates functional and microstructural plasticity after the training of social-interoceptive functions, and illustrates the bidirectional relationship between brain organisation and human social skills.


Navigating daily life requires a number of social skills, such as empathy and understanding other people's thoughts and feelings. Research has found that specific parts of the brain support these abilities in humans. For instance, the brain areas that support compassion are different from the regions involved in understanding other people's perspective and thoughts. It is unclear how learning and refining social skills alters the brain. Previous studies have shown that learning new motor skills restructures the areas of the brain that regulate movement. Could acquiring and improving social skills have a similar effect? To investigate, Valk et al. trained more than 300 healthy adults in different social skills over the course of three months as part of the ReSource project. The program was designed to enhance abilities in compassion and perspective through mental exercises and working in pairs. Participants were also trained using different approaches to see whether changes to the brain are influenced by how a skill is learnt. The brains of the participants were repeatedly pictured using magnetic resonance imaging (MRI). This revealed that different types of training caused unique changes in specific parts of the brain. For example, teaching mindfulness made parts of the brain less functionally connected, whereas training to understand other people's thought increased functional connections between various regions. These functional alterations were paralleled by changes in brain structure. They could also predict improvements in social skills which were measured throughout the study using behavioural tests. These findings suggest that training can help to improve social skills even in adults, which may benefit their quality of life through stronger social connections. Better knowledge of how to develop social skills and their biological basis will help to identify people who need support with these interactions and develop new therapies to nurture their abilities.


Assuntos
Encéfalo , Cognição , Adulto , Humanos , Feminino , Encéfalo/diagnóstico por imagem , Emoções , Aprendizagem , Empatia
19.
bioRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292996

RESUMO

Temporal lobe epilepsy (TLE) is one of the most common pharmaco-resistant epilepsies in adults. While hippocampal pathology is the hallmark of this condition, emerging evidence indicates that brain alterations extend beyond the mesiotemporal epicenter and affect macroscale brain function and cognition. We studied macroscale functional reorganization in TLE, explored structural substrates, and examined cognitive associations. We investigated a multisite cohort of 95 patients with pharmaco-resistant TLE and 95 healthy controls using state-of-the-art multimodal 3T magnetic resonance imaging (MRI). We quantified macroscale functional topographic organization using connectome dimensionality reduction techniques and estimated directional functional flow using generative models of effective connectivity. We observed atypical functional topographies in patients with TLE relative to controls, manifesting as reduced functional differentiation between sensory/motor networks and transmodal systems such as the default mode network, with peak alterations in bilateral temporal and ventromedial prefrontal cortices. TLE-related topographic changes were consistent in all three included sites and reflected reductions in hierarchical flow patterns between cortical systems. Integration of parallel multimodal MRI data indicated that these findings were independent of TLE-related cortical grey matter atrophy, but mediated by microstructural alterations in the superficial white matter immediately beneath the cortex. The magnitude of functional perturbations was robustly associated with behavioral markers of memory function. Overall, this work provides converging evidence for macroscale functional imbalances, contributing microstructural alterations, and their associations with cognitive dysfunction in TLE.

20.
Nat Commun ; 14(1): 2850, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202416

RESUMO

The wiring of the brain connects micro-architecturally diverse neuronal populations, but the conventional graph model, which encodes macroscale brain connectivity as a network of nodes and edges, abstracts away the rich biological detail of each regional node. Here, we annotate connectomes with multiple biological attributes and formally study assortative mixing in annotated connectomes. Namely, we quantify the tendency for regions to be connected based on the similarity of their micro-architectural attributes. We perform all experiments using four cortico-cortical connectome datasets from three different species, and consider a range of molecular, cellular, and laminar annotations. We show that mixing between micro-architecturally diverse neuronal populations is supported by long-distance connections and find that the arrangement of connections with respect to biological annotations is associated to patterns of regional functional specialization. By bridging scales of cortical organization, from microscale attributes to macroscale connectivity, this work lays the foundation for next-generation annotated connectomics.


Assuntos
Conectoma , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neurônios/fisiologia , Vias Neurais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA